题目内容
【题目】已知数列{an}满足an+1=2an﹣1(n∈N+),a1=2.
(1)求证:数列{an﹣1}为等比数列,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn(n∈N+).
【答案】
(1)证明:∵an+1=2an﹣1(n∈N+),
∴an+1﹣1=2(an﹣1)(n∈N+),
又∵a1﹣1=2﹣1=1,
∴数列{an﹣1}是首项为1、公比为2的等比数列,
∴an﹣1=12n﹣1=2n﹣1,
∴an=2n﹣1+1;
(2)解:∵an=2n﹣1+1,
∴nan=n2n﹣1+n,
设Tn=120+221+322+…+n2n﹣1,
∴2Tn=121+222+323+…+(n﹣1)2n﹣1+n2n,
两式相减得:﹣Tn=(1+21+22+23+…+2n﹣1)﹣n2n
= ﹣n2n
=(1﹣n)2n﹣1,
∴Tn=(n﹣1)2n+1,
∴Sn=Tn+ =(n﹣1)2n+1+
【解析】(1)通过对an+1=2an﹣1(n∈N+)变形可知数列{an﹣1}是首项为1、公比为2的等比数列,进而可得结论;(2)通过an=2n﹣1+1可知nan=n2n﹣1+n,利用错位相减法计算即得结论.
【考点精析】关于本题考查的等比数列的通项公式(及其变式)和数列的前n项和,需要了解通项公式:;数列{an}的前n项和sn与通项an的关系才能得出正确答案.
练习册系列答案
相关题目