题目内容

【题目】若二次函数f(x)=x2+bx+c满足f(2)=f(﹣2),且函数的f(x)的一个根为1.
(1)求函数f(x)的解析式;
(2)对任意的x∈[ ,+∞),方程4mf(x)+f(x﹣1)=4﹣4m有解,求实数m的取值范围.

【答案】
(1)解:∵f(2)=f(﹣2)且f(1)=0,函数的f(x)的一个根为1,b+c=0,

f(2)=f(﹣2)可得:4+2b+c=4﹣2b+c,

∴b=0,c=﹣1,

∴f(x)=x2﹣1.


(2)解:由题意知:4m2(x2﹣1)+(x﹣1)2﹣1+4m2﹣4≥0在 上有解,

整理得 上有解,

令g(x)=

,∴

时,函数g(x)得最大值

所以


【解析】(1)利用函数的零点,即可求函数f(x)的解析式;(2)由题意可得4m2(x2﹣1)+(x﹣1)2﹣1+4m2﹣4≥0在 上有解,反例变量,构造函数,利用二次函数的性质求解即可.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网