题目内容

【题目】已知等比数列{an}满足an>0,n=1,2,…,且a5a2n5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n1=(
A.n(2n﹣1)
B.(n+1)2
C.n2
D.(n﹣1)2

【答案】C
【解析】解:∵a5a2n5=22n=an2 , an>0,
∴an=2n
∴log2a1+log2a3+…+log2a2n1=log2(a1a3…a2n1)=log221+3++2n1=log2 =n2
故选:C.
【考点精析】掌握等比数列的基本性质是解答本题的根本,需要知道{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网