题目内容
4.由直线y=0,x=e,y=2x及曲线$y=\frac{2}{x}$所围成的封闭的图形的面积为( )A. | 3+2ln2 | B. | 3 | C. | 2e2-3 | D. | e |
分析 首先由题意画出图形,明确围成的封闭图形用定积分表示,然后求定积分.
解答 解:由题意,直线y=0,x=e,y=2x及曲线y=$\frac{2}{x}$所围成的封闭的图形如图
直线y=2x与曲线y=$\frac{2}{x}$的交点为(1,2),
所以阴影部分的面积为:${∫}_{0}^{1}2xdx+{∫}_{1}^{e}\frac{2}{x}dx$=x2|${\;}_{0}^{1}$+2lnx|${\;}_{1}^{e}$=3
故选B
点评 本题考查了利用定积分求曲边梯形的面积;关键是明确利用定积分表示围成的面积.
练习册系列答案
相关题目
16.已知集合A={x|2<x<4},B={x||x-1|≥2},则A∩B=( )
A. | (3,4) | B. | (2,3] | C. | [3,4) | D. | (2,3) |
13.某同学在研究性学习中,收集到某制药厂今年2-6月甲胶囊产量(单位:千盒)的数据如表所示:
若该同学用最小二乘法求线性回归方程,则可预测得该厂10月份生产的甲胶囊为12.38千盒.
参考数据:22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3.
月份x | 2 | 3 | 4 | 5 | 6 |
y(千盒) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
参考数据:22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3.
14.下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y (吨)的4组对应数据:
若通过上表的4组数据,得到y关于x的线性回归方程为$\stackrel{∧}{y}$=0.7x+0.35,那么表中t的值应为2.8.
x | 2 | 4 | 5 | 7 |
y | 1.5 | t | 4.2 | 5.5 |