题目内容

精英家教网如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,A1D与BC1所成角为90°,则直线BC1与平面BB1D1D所成角的大小为
 
分析:根据已知中长方体ABCD-A1B1C1D1中,AB=BC=2,A1D与BC1所成角为90°,易判断这是一个棱长为2的正方体,其中∠C1BO为直线BC1与平面BB1D1D所成角,解三角形∠C1BO即可得到直线BC1与平面BB1D1D所成角的大小.
解答:解:因为在长方体ABCD-A1B1C1D1中,AB=BC=2
∴上下底面为正方形
又∵BC1∥AD1,A1D与BC1所形成的角为90°,
∴A1D与AD1所形成的角为90°,
∴AA1D1D为正方形,
ABCD-A1B1C1D1为正方体
设 O为B1D1的中点
C1O⊥平面 BB1D1D
连接BO
则∠C1BO为直线BC1与平面BB1D1D所成角
∵BC1=2
2
; C1O=
2

∴SIN∠C1BO=
1
2

∠C1BO=30°
故答案为:30°
点评:本题考查的知识点是直线与平面所成的角,其中判断出棱柱为正方体且C1BO为直线BC1与平面BB1D1D所成角,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网