题目内容
【题目】已知点P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4),P5(x5 , y5),P6(x6 , y6)是抛物线C:y2=2px(p>0)上的点,F是抛物线C的焦点,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,则抛物线C的方程为( )
A.y2=4x
B.y2=8x
C.y2=12x
D.y2=16x
【答案】B
【解析】解:由抛物线的焦半径公式:|PF|=x+ , ∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=x1+x2+x3+x4+x5+x6+3p=36,
即24+3p=36,解得:p=4,
∴抛物线C的方程y2=8x,
故选B.
练习册系列答案
相关题目
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,
9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527 | 0293 | 7140 | 9857 | 0347 | 4373 | 8636 | 6947 | 1417 | 4698 |
0371 | 6233 | 2616 | 8045 | 6011 | 3661 | 9597 | 7424 | 7610 | 4281 |
根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.