题目内容

【题目】如图,已知点D为三角形ABC边BC上一点, =3 ,En(n∈N*)为AC边上的一列点,满足 = an+1 ﹣(3an+2) ,其中实数列{an}中,an>0,a1=1,则{an}的通项公式为(
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1

【答案】D
【解析】解:∵ = an+1 ﹣(3an+2) = = = , ∴(﹣ an+1+3an+3) = +( an+
∵En(n∈N+)为边AC的一列点,
∴﹣ an+1+3an+3=1+ an+
化为:an+1=3an+2,即an+1+1=3(an+1),
∴数列{an+1}是等比数列,首项为2,公比为3.
∴an+1=2×3n﹣1 , 即an=2×3n﹣1﹣1,
故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网