题目内容
7.一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x,y)在这个平行四边形的内部或边上,则z=2x-5y的最大值与最小值的和等于( )A. | 8 | B. | 6 | C. | -12 | D. | -24 |
分析 作出不平行四边形对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.
解答 解:∵平行四边形的三个顶点的坐标为A(-1,2),B(3,4),C(4,-2),
∴对应的平行四边形可能是EACB或者ABCD或ABFC,
平移直线z=2x-5y,
由图象可知当直线经过点D时,直线z=2x-5y的截距最小,此时z最大,
设D(x,y),
则满足$\overrightarrow{AB}=\overrightarrow{DC}$,即(4,2)=(4-x,-2-y),
即4-x=4且-2-y=2,解得x=0,y=-4,即D(0,-4),
代入目标函数得z=-5×(-4)=20,
当直线经过点E时,直线z=2x-5y的截距最大,此时z最小,
设E(x,y),
则满足$\overrightarrow{AE}$=$\overrightarrow{CB}$,即(-1,6)=(x+1,y-2),
即x+1=-1且y-2=6,解得x=-2,y=8,即E(-2,8),
代入目标函数得z=-4-40=-44,
故z=2x-5y的最大值与最小值的和等于-44+20=-24.
故选:D.
点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.注意满足条件的平行四边形有3个.
练习册系列答案
相关题目
18.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
2.将A,B,C,D,E五种不同的文件随机放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,则文件A,B被放在相邻的抽屉内且文件C,D被放在不相邻的抽屉内的种数有( )
A. | 120 | B. | 240 | C. | 480 | D. | 720 |
16.如图是y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象为了得到y=sin2x的图象,只需要将此图象( )
A. | 向左平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |