题目内容
设数列
的前n项积为
;数列
的前n项和为
.
(1)设
.①证明数列
成等差数列;②求证数列
的通项公式;
(2)若
恒成立,求实数k的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714803381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714819491.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714835385.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714850497.gif)
(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714866310.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714881270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714803381.gif)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714913768.gif)
(1)数列
是以2为首项,1为公差的等差数列.
②
.
(2)实数
的取值范
围为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714928251.gif)
②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714944508.gif)
(2)实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714944193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314271497572.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714975367.gif)
(1)①由
得:
,
,即
.
又
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715084318.gif)
∴数列
是以2为首项,1为公差的等差数列.
②
,
,
.
(2)∵
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715193321.gif)
∴
,
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715318491.gif)
∴数列
是以
为首项,
为公比的等比数列.
∴
.
∵
对
恒成立
∴
对
恒成立,
即
对
恒成立
设
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715505645.gif)
∵
,
,∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715552405.gif)
∴当
时,
单调递减.
设
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231427156151211.gif)
∴当
时,
单调递增;
;当
时,
单调递减
设
,则
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142716145663.gif)
∴
最大,且
.∴实数
的取值范
围为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714991377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715022565.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715022800.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715037276.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715069561.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715084318.gif)
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714928251.gif)
②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715115559.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715147419.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714944508.gif)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715178386.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715193321.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715209274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715287522.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715287468.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715318491.gif)
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715334363.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715349210.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715349210.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715381607.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715396550.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715396361.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715412573.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715396361.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715443738.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715396361.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715474600.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715505645.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715521544.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715537582.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715552405.gif)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715396361.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715583266.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715599573.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231427156151211.gif)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715677269.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715677259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715708351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715708234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142715677259.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142716083448.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142716129543.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142716145663.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142716176245.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142716192377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714944193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314271622372.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142714975367.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目