题目内容

【题目】对任意的x,y∈(0,+∞),不等式ex+y﹣4+ex﹣y+4+6≥4xlna恒成立,则正实数a的最大值是(
A.
B.
C.e
D.2e

【答案】A
【解析】解:设f(x)=ex+y﹣4+ex﹣y+4+6, 不等式4xlna≤ex+y﹣4+ex﹣y+4+6恒成立,即为不等式4xlna≤f(x)恒成立.
即有f(x)=ex(ey﹣4+e﹣(y﹣4))+6≥6+2ex(当且仅当y=0时,取等号),
由题意可得4xlna≤6+2ex﹣4
即有2lna≤ 在x>0时恒成立,
令g(x)= ,g′(x)= ,令g′(x)=0,即(x﹣1)ex﹣4=3,
令h(x)=(x﹣1)ex﹣4 , (x>0),h′(x)=xex﹣4>0,
∵x>0,ex﹣4>0,
∴h′(x)>0,∴h(x)在(0,+∞)上单调递增,
又∵h(4)=3,即有(x﹣1)ex﹣4=3的根为4,
∴当x>4时g(x)递增,当0<x<4时g(x)递减,
∴当x=4时,g(x)取得最小值g(4)=1,
∴2lna1,lna
∴0<a ,(当x=2,y=0时,a取得最大值 ),
故选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网