题目内容
【题目】已知正方体 ABCD-A1B1C1D1 的棱长为 1 , E 、F 分别是棱 AB 、BC上的动点 ,且AE = BF .求直线 A1E 与C1F 所成角的最小值(用反三角函数表示).
【答案】
【解析】
解法 1 :如图, 延长 DC 到点 G, 使得 CG = AE , 联 结C1G 、FG.
由题意知,A1E ∥ C1G, A1E 到C1F 所 成 的 角 等 于∠FC1G .
令 AE = CG = x(0≤x≤1), 则有CF =1 - x , C1G =,
.
在△C1FG 中, 由余弦定理得
.
∠FC1G 取得最小值就是取得最大值, 亦即取得最小值.
利用等式,
得.
所以,当时,取得最小值.
因此,,即.
故 A1E 与 C1F 所成的最小角为,此时, E 、F 分别为棱AB 、BC 的中点.
解法 2:前面同上, 得到.
则
.
令,得.
所以, 当时,取最小值.
以下与解法 1 同.
练习册系列答案
相关题目
【题目】“互联网”是“智慧城市”的重要内士,市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费.为了解免费在市的使用情况,调査机构借助网络进行了问卷调查,并从参与调査的网友中抽取了人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有的把握认为市使用免费的情况与年龄有关;
(2)将频率视为概率,现从该市岁以上的市民中用随机抽样的方法每次抽取人,共抽取次.记被抽取的人中“偶尔或不用免费”的人数为,若每次抽取的结果是相互独立的,求的分布列,数学期望和方差.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |