题目内容
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.
【答案】(1);(2)详见解析.
【解析】
试题分析:(1)记事件{从甲箱中摸出的1个球是红球},{从乙箱中摸出的1个球是红球}
{顾客抽奖1次获一等奖},{顾客抽奖1次获二等奖},{顾客抽奖1次能获奖},则可知
与相互独立,与互斥,与互斥,且,,,再
利用概率的加法公式即可求解;(2)分析题意可知,分别求得,,,,即可知的概率分布及其期望.
试题解析:(1)记事件{从甲箱中摸出的1个球是红球},{从乙箱中摸出的1个球是红球}
{顾客抽奖1次获一等奖},{顾客抽奖1次获二等奖},{顾客抽奖1次能获奖},由题意,与相互独立,与互斥,与互斥,且,,,
∵,,∴,
,故所求概率为;(2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,∴,
于是,,,
,故的分布列为
0 | 1 | 3 | ||
的数学期望为 .
练习册系列答案
相关题目
【题目】随着生活水平的提高,越来越多的人参与了潜水这项活动。某潜水中心调查了100名男姓与100名女姓下潜至距离水面5米时是否会耳鸣,下图为其等高条形图:
绘出2×2列联表;
②根据列联表的独立性检验,能否在犯错误的概率不超过0.05的前提下认为耳鸣与性别有关系?
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
附: