题目内容
17.在△ABC中,角A,B,C所对的边分别为a,b,c.(1)若$\frac{c}{a}$=$\sqrt{5}$,且cosC=$\frac{2\sqrt{5}}{5}$,求sinA的值.
(2)若(b2+c2-a2)tanA=$\sqrt{2}$bc,求sinA的值.
分析 (1)由已知条件利用正弦定理得到$\frac{sinC}{sinA}=\sqrt{5}$,由cosC的值能求出sinC,由此能求出sinA.
(2)由已知条件利用余弦定理得tanA=$\frac{\sqrt{2}bc}{{b}^{2}+{c}^{2}-{a}^{2}}$=$\frac{2bc}{\sqrt{2}({b}^{2}+{c}^{2}-{a}^{2})}$=$\frac{\sqrt{2}}{2}$×$\frac{1}{cosA}$,由此能求出sinA.
解答 解:(1)∵在△ABC中,角A,B,C所对的边分别为a,b,c,$\frac{c}{a}$=$\sqrt{5}$,且cosC=$\frac{2\sqrt{5}}{5}$,
∴$\left\{\begin{array}{l}{\frac{sinC}{sinA}=\sqrt{5}}\\{sinC=\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}}\end{array}\right.$,
解得sinA=$\frac{1}{5}$.
(2)∵(b2+c2-a2)tanA=$\sqrt{2}$bc,
∴tanA=$\frac{\sqrt{2}bc}{{b}^{2}+{c}^{2}-{a}^{2}}$=$\frac{2bc}{\sqrt{2}({b}^{2}+{c}^{2}-{a}^{2})}$=$\frac{\sqrt{2}}{2}$×$\frac{1}{cosA}$,
∴$\frac{sinA}{cosA}=\frac{\sqrt{2}}{2}×\frac{1}{cosA}$,
∴sinA=$\frac{\sqrt{2}}{2}$.
点评 本题考查三角形内角的正弦值的求法,是中档题,解题时要认真审题,注意正弦定理和余弦定理的合理运用.
A. | $\frac{1}{4}$ | B. | $4\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | 64 |
A. | ∅ | B. | {(0,-1),(1,0)} | C. | [-1,+∞) | D. | {0,1} |
A. | 8个 | B. | 9个 | C. | 5个 | D. | 6个 |