题目内容

【题目】已知椭圆的离心率为,点分别是椭圆的左、右焦点,为等腰三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过左焦点作直线交椭圆于两点,其中,另一条过的直线交椭圆于两点(不与重合),且点不与点重合. 过轴的垂线分别交直线,.

①求点坐标; ②求证:.

【答案】(Ⅰ); (Ⅱ) 见解析.

【解析】

(Ⅰ)根据已知求出,即得椭圆方程为. (Ⅱ)①由 可求. ②当轴垂直时,两点与,两点重合,由椭圆的对称性,. 当不与轴垂直时,联立直线和椭圆方程证明,即.

(Ⅰ)由已知,得

为等腰三角形,

解得

椭圆方程为.

(Ⅱ)①由题意可得直线的方程为.

与椭圆方程联立,由 ,可求.

②当轴垂直时,两点与,两点重合,由椭圆的对称性,.

不与轴垂直时,

的方程为).

消去,整理得.

.

由已知,,则直线的方程为

,得点的纵坐标.

代入得.

由已知,,则直线的方程为,

,得点 的纵坐标.

代入得.

,

代入到中,

=.

,即.

练习册系列答案
相关题目

【题目】2020年春节期间,全国人民都在抗击新型冠状病毒肺炎的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用AB两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:

所用的时间(单位:小时)

路线1的频数

200

400

200

200

路线2的频数

100

400

400

100

假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.

1)汽车A和汽车B应如何选择各自的路线.

2)若路线1、路线2一次性费用分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):

到达时间与约定时间的差x(单位:小时)

该车得分

0

1

2

生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车AB用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网