题目内容
【题目】由于《中国诗词大会》节目在社会上反响良好,某地也模仿并举办民间诗词大会,进入正赛的条件为:电脑随机抽取10首古诗,参赛者能够正确背诵6首及以上的进入正赛.若诗词爱好者甲、乙参赛,他们背诵每一首古诗正确的概率均为.
(1)求甲进入正赛的概率.
(2)若参赛者甲、乙都进入了正赛,现有两种赛制可供甲、乙进行PK,淘汰其中一人.
赛制一:积分淘汰制,电脑随机抽取4首古诗,每首古诗背诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为,乙背诵每首古诗正确的概率为,设甲的得分为,乙的得分为.
赛制二:对诗淘汰制,甲、乙轮流互出诗名,由对方背诵且互不影响,乙出题,甲回答正确的概率为0.3,甲出题,乙回答正确的概率为0.4,谁先背诵错误谁先出局.
(i)赛制一中,求甲、乙得分的均值,并预测谁会被淘汰;
(ii)赛制二中,谁先出题甲获胜的概率大?
【答案】(1);(2)(i),0,乙可能被淘汰;(ii)甲先出题甲获胜的概率大.
【解析】
(1)利用相互独立事件的概率公式求解;
(2)(i)分别写出的可能取值,求出对应的概率,再求期望,比较大小得出结论;(ii)分别求出甲或乙先出题时,甲乙两人获胜的概率,从而得出结论.
(1)甲进入正赛的概率为
,
∴甲进入正赛的概率.
(2)(i)由题意,甲乙两人的得分均有可能为8分,5分,2分,-1分,-4分.
,
,
,
.
,
,
.
.
,乙可能被淘汰.
(ii)甲先出题且甲获胜的概率:
,
此为等比数列求和,.
乙先出题且乙获胜的概率:
,
此为等比数列求和,
则甲获胜的概率约为.
,甲先出题甲获胜的概率大.
【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
组别 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求;
(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
(ii)每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;
②若,则,,.