题目内容
【题目】如图,PO垂直圆O所在的平面,AB是圆O的一条直径,C为圆周上异于A,B的动点,D为弦BC的中点,,.
(1)证明:平面平面;
(2)当四面体PABC的体积最大时,求B到平面PAC的距离.
【答案】(1)证明见解析 (2)
【解析】
(1)由题意可知,根据圆的几何性质可知;由中位线定理可得,即可证明
(2)根据题意可知当时,四面体PABC的体积最大,取线段AC的中点E,连接OE,PE,可由勾股定理求得,进而求得,再根据等体积法即可求得B到平面PAC的距离.
(1)证明:因为PO垂直圆O所在平面,所以.
是圆O的一条直径,
则,即
因为D为弦BC的中点,O为圆O的圆心,
则
所以.
因为,所以,
又,所以.
(2)当时,四面体PABC的体积最大,
此时.
取线段AC的中点E,连接OE,PE,则,,,从而.
设B到平面PAC的距离为h,由,得,
解得,即B到平面PAC的距离为.
【题目】某理财公司有两种理财产品和,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
投资结果 | 获利20% | 获利10% | 不赔不赚 | 亏损10% |
概率 | 0.2 | 0.3 | 0.2 | 0.3 |
产品(其中)
投资结果 | 获利30% | 不赔不赚 | 亏损20% |
概率 | 0.1 |
(1)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于0.7,求的取值范围;
(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪种产品?
【题目】某手机商家为了更好地制定手机销售策略,随机对顾客进行了一次更换手机时间间隔的调查.从更换手机的时间间隔不少于3个月且不超过24个月的顾客中选取350名作为调查对象,其中男性顾客和女性顾客的比为,商家认为一年以内(含一年)更换手机为频繁更换手机,否则视为未频繁更换手机.现按照性别采用分层抽样的方法从中抽取105人,并按性别分为两组,得到如下表所示的频数分布表:
事件间隔(月) | |||||||
男性 | x | 8 | 9 | 18 | 12 | 8 | 4 |
女性 | y | 2 | 5 | 13 | 11 | 7 | 2 |
(1)计算表格中x,y的值;
(2)若以频率作为概率,从已抽取的105且更换手机时间间隔为3至6个月(含3个月和6个月)的顾客中,随机抽取2人,求这2人均为男性的概率;
(3)请根据频率分布表填写列联表,并判断是否有以上的把握认为“频繁更换手机与性别有关”.
频繁更换手机 | 未频繁更换手机 | 合计 | |
男性顾客 | |||
女性顾客 | |||
合计 |
附表及公式:
P() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |