题目内容
若函数f(x)=cos2x+asinx在区间是减函数,则a的取值范围是________.
某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.
(Ⅰ)如果不限定车型,l=6.05,则最大车流量为________辆/小时;
(Ⅱ)如果限定车型,l=5,则最大车流量比(Ⅰ)中的最大车流量增加________辆/小时.
直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为
A.
B.
C.
D.
若向量满足:||=1,(+)⊥(2+)⊥,则||=
2
1
已知二面角α-l-β为60°,ABα,AB⊥l,A为垂足,CDβ,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为
已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.
(Ⅰ)求C的方程;
(Ⅱ)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相较于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.
为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为
50
40
25
20
已知复数z满足(3+4i)z=25,则z=
3-4i
3+4i
-3-4i
-3+4i
已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex
(3)证明:对任意给定的正数e,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.