题目内容
【题目】种子发芽率与昼夜温差有关.某研究性学习小组对此进行研究,他们分别记录了3月12日至3月16日的昼夜温差与每天100颗某种种子浸泡后的发芽数,如下表:
(I)从3月12日至3月16日中任选2天,记发芽的种子数分别为c,d,求事件“c,d均不小于25”的概率;
(II)请根据3月13日至3月15日的三组数据,求出y关于x的线性回归方程;
(III)若由线性回归方程得到的估计数据与实际数据误差均不超过2颗,则认为回归方程是可靠的,试用3月12日与16日的两组数据检验,(II)中的回归方程是否可靠?
【答案】(1) ;(2) ;(3)详见解析.
【解析】试题分析:(1)由列举法得出从5天中任选2天的基本事件, 选出的二天种子发芽数均不小于25的基本事件,根据古典概型得出概率;(2)先求出平均数和代入公式,求出线性回归方程;(3)将和代入方程,与(II)中的回归方程进行比较,得出结论.
试题解析:(Ⅰ)从5天中任选2天,共有10个基本事件:(12日,13日),(12日,14日),(12日,15日),
(12日,16日),(13日,14日),(13日,15日),(13日,16日),(14日,15日),(14日,16日),(15日,16日).
选出的二天种子发芽数均不小于25共有3个基本事件:(13日,14日),(13日,15日),(14日,15日).
∴事件“均不小于25”的概率为.
(Ⅱ). 5. =2.
∴.
∴关于的线性回归方程为.
(Ⅲ)当时, .
当时, .
∴回归方程是可靠的.
点睛:具有以下两个特点的概率模型称为古典概率模型,简称古典概型:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.