题目内容
【题目】已知数列{an}满足al=﹣2,an+1=2an+4.
(I)证明数列{an+4}是等比数列;
(Ⅱ)求数列{|an|}的前n项和Sn .
【答案】(I)证明:∵数列{an}满足al=﹣2,an+1=2an+4,∴an+1+4=2(an+4),∴数列{an+4}是等比数列,公比与首项为2. (II)解:由(I)可得:an+4=2n , ∴an=2n﹣4,∴当n=1时,a1=﹣2;n≥2时,an≥0,
∴n≥2时,Sn=﹣a1+a2+a3+…+an=2+(22﹣4)+(23﹣4)+…+(2n﹣4)
= ﹣4(n﹣1)=2n+1﹣4n+2.n=1时也成立.
∴Sn=2n+1﹣4n+2.n∈N* .
【解析】(I)数列{an}满足al=﹣2,an+1=2an+4,an+1+4=2(an+4),即可得出.(II)由(I)可得:an+4=2n , 可得an=2n﹣4,当n=1时,a1=﹣2;n≥2时,an≥0,可得n≥2时,Sn=﹣a1+a2+a3+…+an .
练习册系列答案
相关题目