题目内容
【题目】某家具厂有方木料,五合板,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料、五合板;生产每个书橱需要方木枓、五合板.出售一张书桌可获利润元,出售一个书橱可获利润元,怎样安排生产可使所得利润最大?最大利润为多少?
【答案】生产书桌张,书橱个,可使所得利润最大,最大利润为元.
【解析】【试题分析】本题旨在考查线性规划的知识在解决实际问题中的运用,求解时充分借助题设条件,将问题转化为二元一次不等式组,然后画出不等式组表示的区域,然后数形结合求解:
解:
设生产书桌张,书橱个,利润总额为元.则,可行域如图.由图可知:当直线经过可行域上的点时,截距最大,即最大,解方程组得的坐标为, (元).因此,生产书桌张,书橱个,可使所得利润最大,最大利润为元.
【题目】2017年某市街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:
年龄 | ||||||
受访人数 | 5 | 6 | 15 | 9 | 10 | 5 |
支持发展共享单车人数 | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系:
年龄低于35岁 | 年龄不低于35岁 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(Ⅱ)若对年龄在的被调查人中随机选取两人,对年龄在的被调查人中随机选取一人进行调查,求选中的3人中支持发展共享单车的人数为2人的概率.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: ,其中.