题目内容
数列
是等差数列,
;数列
的前n项和是
,且
.
(1) 求数列
的通项公式; (2) 求证:数列
是等比数列;
(3) 记
,求
的前n项和![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145960388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145773481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145789669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145804491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145835373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145851666.png)
(1) 求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145773481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145804491.png)
(3) 记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145913542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145929450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145960388.png)
(Ⅰ)
.(Ⅱ)见解析;(Ⅲ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145991851.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146085956.png)
据等差数列通项公式∵
,
,∴
,得出首项,公差;进而求得通项;
是和与通项的关系,根据当
时,
,当
时,
,即
,证明
是等比数列;
是差比数列,求和用错位相减法,注意项数的对齐。
解:(Ⅰ)设
的公差为
,则:
,
,
∵
,
,∴
,∴
.
∴
. …………………………………………5分
(Ⅱ)当
时,
,由
,得
.
当
时,
,
,
∴
,即
.
∴
.
∴
是以
为首项,
为公比的等比数列. …………………………………5分
(Ⅲ)由(2)可知:
.
∴
.
∴
.
∴
.
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201469902511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201470051855.png)
.
∴
. …………………………………………………6分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146101445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146210488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146241985.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145851666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146288357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146303443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146319435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146350876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146366769.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145804491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201464131601.png)
解:(Ⅰ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145773481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146459321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146475542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146506591.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146101445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146210488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146241985.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146584603.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145991851.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146288357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146303443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146662617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146693530.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146319435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146740677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146756698.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146350876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146366769.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146818607.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220145804491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146865382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146881327.png)
(Ⅲ)由(2)可知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146912945.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201469271492.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201469433063.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201469742327.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201469902511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201470051855.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201470371179.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220146085956.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目