题目内容

已知圆O′:(x-1)2+y2=36,点A(-1,0),M是圆上任意一点,线段AM的中垂线l和直线O′M相交于点Q,则点Q的轨迹方程为(  )
A.
x2
9
-
y2
8
=1
B.
x2
8
+
y2
9
=1
C.
x2
9
+
y2
8
=1
D.
x2
8
-
y2
9
=1
如图,联结QA,由于Q在AM的中垂线上,有|QA|=|QM|,
则|QA|+|QO′|=|QM|+|QO′|=|O′M|.
O′M是⊙O′的半径,|O′M|=6.
所以Q到A、O′的距离之和为定值,轨迹为椭圆
椭圆的焦点是A、O′,中心是AO′中点
由于A(-1,0),O′(1,0),
所以c=1,a=3.
则b2=a2-c2=8.
则椭圆的方程是:
x2
9
+
y2
8
=1

即Q的轨迹方程为
x2
9
+
y2
8
=1

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网