题目内容

已知等差数列{an}前三项的和为-3,前三项的积为8.
(1)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(2)若a2,a3,a1不成等比数列,求数列{
1
anan+1
}的前n项和.
(1)设等差数列{an}的公差为d,
由题意得
3a1+3d=-3
a1(a1+d)(a1+2d)=8
解得
a1=2
d=-3
a1=-4
d=3

∴an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7.
当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.
设数列{|an|}的前n项和为Sn
∴当n=1,2时,|an|=7-3n,Sn=
n(4+7-3n)
2
=-
3
2
n2+
11
2
n;
当n≥3时,|an|=3n-7,
Sn=-a1-a2+a3+a4+…+an
=5+
(n-2)(2+3n-7)
2

=
3
2
n2-
11
2
n+10

综上可得:|an|=|7-3n|=
-3n+7,n=1,2
3n-7,n≥3

Sn=
-
3
2
n2+
11
2
n,n=1,2
3
2
n2-
11
2
n+10,n≥3

(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列.
1
anan+1
=
1
(3n-5)(3n-2)
=
1
3
(
1
3n-5
-
1
3n-2
)

∴Tn=
1
3
[(-
1
2
-1)+(1-
1
4
)+…+(
1
3n-5
-
1
3n-2
)]

=
1
3
[-
1
2
-
1
3n-2
]

=
n
-6n+4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网