题目内容
已知等差数列{an}前三项的和为-3,前三项的积为8.
(1)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(2)若a2,a3,a1不成等比数列,求数列{
}的前n项和.
(1)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(2)若a2,a3,a1不成等比数列,求数列{
1 |
anan+1 |
(1)设等差数列{an}的公差为d,
由题意得
解得
或
.
∴an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7.
当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.
设数列{|an|}的前n项和为Sn.
∴当n=1,2时,|an|=7-3n,Sn=
=-
n2+
n;
当n≥3时,|an|=3n-7,
Sn=-a1-a2+a3+a4+…+an
=5+
=
n2-
n+10,
综上可得:|an|=|7-3n|=
Sn=
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列.
=
=
(
-
),
∴Tn=
[(-
-1)+(1-
)+…+(
-
)]
=
[-
-
]
=
.
由题意得
|
|
|
∴an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7.
当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.
设数列{|an|}的前n项和为Sn.
∴当n=1,2时,|an|=7-3n,Sn=
n(4+7-3n) |
2 |
3 |
2 |
11 |
2 |
当n≥3时,|an|=3n-7,
Sn=-a1-a2+a3+a4+…+an
=5+
(n-2)(2+3n-7) |
2 |
=
3 |
2 |
11 |
2 |
综上可得:|an|=|7-3n|=
|
Sn=
|
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列.
1 |
anan+1 |
1 |
(3n-5)(3n-2) |
1 |
3 |
1 |
3n-5 |
1 |
3n-2 |
∴Tn=
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3n-5 |
1 |
3n-2 |
=
1 |
3 |
1 |
2 |
1 |
3n-2 |
=
n |
-6n+4 |
练习册系列答案
相关题目