题目内容
【题目】已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在处取得极值,对任意的恒成立,,求实数的取值范围.
【答案】(1)详见解析;(2).
【解析】试题分析:(Ⅰ)求出原函数的导函数,然后对 分类讨论导函数的符号,在 时由导函数在不同区间内的符号得到原函数的单调性,从而求得函数的极值点;
(Ⅱ)由函数 在 处取得极值求得,代入函数解析式,进一步代入 ,分离参数后构造函数,利用导数求其最小值后得答案.
试题解析:
(1).
当时,在上恒成立,函数在单调递减,所以在上没有极值点;
当时,由得,由得
所以在上递减,在递增,即在处有极小值.
综上:当时,在上没有极值点;
当时,在上有一个极值点.
(2)因为函数在处取得极值,所以.
因为,令,可得在上递减,在上递增.
∴ ∴.
【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:
题号 | 1 | 2 | 3 | 4 | 5 |
考前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):
学生编号 题号 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;
题号 | 1 | 2 | 3 | 4 | 5 |
实测答对人数 | |||||
实测难度 |
(Ⅱ)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(Ⅲ)定义统计量,其中为第题的实测难度, 为第题的预估难度.规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.
【题目】学校高三数学备课组为了更好地制定复习计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:
期末分数段 | ||||||
人数 | 5 | 10 | 15 | 10 | 5 | 5 |
“过关”人数 | 1 | 2 | 9 | 7 | 3 | 4 |
(1)由以上统计数据完成如下列联表,并判断是否有的把握认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由:
分数低于90分人数 | 分数不低于90分人数 | 合计 | |
“过关”人数 | |||
“不过关”人数 | |||
合计 |
(2)在期末分数段的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为,求的分布列及数学期望.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |