题目内容
【题目】下列命题: 1)y=|cos(2x+ )|最小正周期为π;
2)函数y=tan 的图象的对称中心是(kπ,0),k∈Z;
3)f(x)=tanx﹣sinx在(﹣ , )上有3个零点;
4)若 ∥ , ,则
其中错误的是
【答案】(1)(3)(4)
【解析】解:(1)函数y=cos(2x+ )最小正周期为π,则y=|cos(2x+ )|最小正周期为 ;则(1)错误,(2)由 = ,得x=kπ,即函数y=tan 的图象的对称中心是(kπ,0),k∈Z正确,则(2)正确;(3)由f(x)=tanx﹣sinx=0得,tanx=sinx,则sinx=0或cosx=1, 则在(﹣ , )内,x=0,此时函数只有1个零点;则(3)错误,(4)若 ∥ , ,则 错误,当 = 时,结论不成立,则(4)错误,
故错误的是(1)(3)(4),
所以答案是:(1)(3)(4)
【考点精析】认真审题,首先需要了解命题的真假判断与应用(两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系).
练习册系列答案
相关题目