题目内容
【题目】已知直线L: y=x+m与抛物线y2=8x交于A、B两点(异于原点),
(1)若直线L过抛物线焦点,求线段 |AB|的长度;
(2)若OA⊥OB ,求m的值;
【答案】(1)m =-2,|AB|=16;(2)m=-8.
【解析】
(1)把直线方程与抛物线方程联立消去y,根据韦达定理表示出x1+x2和x1x2,利用弦长公式可求;
(2)由于OA⊥OB,从而有x1x2+y1y2=0,利用韦达定理可得方程,从而求出m的值.
(1)设A(x1,y1)、B(x2,y2),抛物线y2=8x的焦点坐标为(2,0)
直线L: y=x+m过点(2,0),得m=2,
直线L:y=x2与抛物线y2=8x联立可得x212x+4=0,
∴x1+x2=12, x1x2=4,
∴.
(2)联立,得
.
∵OA⊥OB,∴
.
m=0或m=8,
经检验m=8.
【题目】某地区不同身高的未成年男孩的体重平均值如下表:
身高 | 60 | 70 | 80 | 90 | 100 |
体重 | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 |
已知与之间存在很强的线性相关性,
(1)据此建立与之间的回归方程;
(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高体重为的在校男生的体重是否正常?
参考数据:,,
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,.
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式: , .
参考数据: .