题目内容
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系,已知曲线C的极坐标方程为,且直线l经过曲线C的左焦点F.
(1)求直线l的普通方程;
(2)设曲线C的内接矩形的周长为L,求L的最大值.
【答案】(1)x+2y+1=0(2)
【解析】
(1)由极坐标化直角坐标的公式可得到曲线C的普通方程,消去参数t可得到直线普通方程,再代入F点坐标可得到直线方程;(2)椭圆C的内接矩形在第一象限的顶点为(,sinθ)内接矩形的周长为,化一求最值即可.
(1)因为曲线C的极坐标方程为,即ρ2+ρ2sin2θ=2.
将ρ2=x2+y2,ρsinθ=y,代入上式,得
x2+2y2=2,即.
所以曲线C的直角坐标方程为.
于是c2=a2-b2=1,所以F(-1,0).
由消去参数t,
得直线l的普通方程为.
将F(-1,0)代入直线方程得.
所以直线l的普通方程为x+2y+1=0.
(2)设椭圆C的内接矩形在第一象限的顶点为(,sinθ)(),
所以椭圆C的内接矩形的周长为(其中),故椭圆C的内接矩形的周长的最大值.
【题目】某电器商场销售的彩电、U盘和播放器三种产品.该商场的供货渠道主要是甲、乙两个品牌的二级代理商.今年9月份,该商场从每个代理商处各购得彩电100台、U盘52个、播放器180台.而10月份,该商场从每个代理商处购得的产品数量都是9月份的1.5倍.现知甲、乙两个代理商给出的产品单价(元)如下页表中所示:
彩电 | U盘 | 播放器 | |
甲代理商单价(元) | 2350 | 1200 | 750 |
乙代理商单价(元) | 2100 | 920 | 700 |
(1)计算,并指出结果的实际意义;
(2)用矩阵求该商场在这两个月中分别支付给两个代理商的购货费用.
【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | 140 | ||
对商品不满意 | 10 | ||
合计 | 200 |
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.
①求随机变量X的分布列;
②求X的数学期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |