题目内容
【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析
【解析】
(Ⅰ)转化为证明;(Ⅱ)转化为证明,;(Ⅲ)根据线面平行的性质定理.
(Ⅰ)因为四边形为正方形,所以,由于平面,
平面,所以平面.
(Ⅱ)因为四边形为正方形,
所以.平面平面,
平面平面,
所以平面.所以.
取中点,连接.由,,,
可得四边形为正方形.
所以.所以.所以.
因为,所以平面.
(Ⅲ)存在,当为的中点时,平面,此时.
证明如下:
连接交于点,由于四边形为正方形,
所以是的中点,同时也是的中点.
因为,又四边形为正方形,
所以,
连接,所以四边形为平行四边形.
所以.又因为平面,平面,
所以平面.