题目内容
【题目】某校学生参加了“铅球”和“立定跳远”两个科目的体能测试,每个科目的成绩分为,,,,五个等级,分别对应5分,4分,3分,2分,1分,该校某班学生两科目测试成绩的数据统计如图所示,其中“铅球”科目的成绩为的学生有8人.
(Ⅰ)求该班学生中“立定跳远”科目中成绩为的人数;
(Ⅱ)若该班共有10人的两科成绩得分之和大于7分,其中有2人10分,3人9分,5人8分.从这10人中随机抽取两人,求两人成绩之和的分布列和数学期望.
【答案】(1)3人;(2)见解析.
【解析】试题分析:(Ⅰ)由“铅球”科目中成绩为E的学生有10人,频率为0.2,能求出该班有50人,由此能求出该班学生中“立定跳远”科目中成绩等级为A的人数.
(Ⅱ)设两人成绩之和为X,则X的值可能为:16,17,18,19,20,分别求出相应的概率,由此能求出X的分布列及EX.
解:(Ⅰ)∵“铅球”科目中成绩为E的学生有10人,频率为0.2,
∴该班有:=50人,
∴该班学生中“立定跳远”科目中成绩等级为A的人数为:
50(1﹣0.375﹣0.375﹣0.150﹣0.020)=4,
∴该班学生中“立定跳远”科目中成绩为A的人数为4人.
(Ⅱ)设两人成绩之和为X,则X的值可能为:16,17,18,19,20,
P(X=16)==,
P(X=17)==,
P(X=18)==,
P(X=19)==,
P(X=20)==,
∴X的分布列为:
EX==.
练习册系列答案
相关题目