题目内容
20.设f(x)=$\left\{\begin{array}{l}{{2}^{x+1}(x≥0)}\\{f(x+1)+2(x<0)}\end{array}\right.$,则f(-$\frac{2015}{2}$)=2$\sqrt{2}$+2016.分析 由已知中f(x)=$\left\{\begin{array}{l}{{2}^{x+1}(x≥0)}\\{f(x+1)+2(x<0)}\end{array}\right.$,将x=-$\frac{2015}{2}$代入,分析变量的变化规律,可得答案.
解答 解:∵f(x)=$\left\{\begin{array}{l}{{2}^{x+1}(x≥0)}\\{f(x+1)+2(x<0)}\end{array}\right.$,
∴f(-$\frac{2015}{2}$)=f(-$\frac{2013}{2}$)+2=f(-$\frac{2011}{2}$)+2×2=…=f(-$\frac{1}{2}$)+2×1007=f($\frac{1}{2}$)+2×1008=${2}^{\frac{3}{2}}$+2016=2$\sqrt{2}$+2016,
故答案为:2$\sqrt{2}$+2016.
点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.
练习册系列答案
相关题目
11.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA-$\sqrt{3}$acosB=0,且b2=ac,则$\frac{b}{a+c}$的值为
( )
( )
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
15.已知f(x)=|x-2|-1,若直线y=m与函数y=f[f(x)]的图象有四个不同的交点,则实数m的取值范围是( )
A. | (-1,2) | B. | (0,3) | C. | (-1,1) | D. | (-1,3) |
5.设f(x)为定义在R上的奇函数,且是周期为4的周期函数,f(1)=1,则f(-1)+f(8)=( )
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
10.已知向量$\overrightarrow{a}$=(1,-1)则下列向量中与向量$\overrightarrow{a}$平行且同向的是( )
A. | (2,-2) | B. | (-2,2) | C. | (-1,2) | D. | (2,-1) |