题目内容
【题目】在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且S△ABC= ,求a+b的值.
【答案】
(1)解:由 a=2csinA及正弦定理,得 sinA=2sinCsinA,
∵sinA≠0,
∴sinC= .
又∵△ABC是锐角三角形,
∴C=
(2)解:∵c= ,C= ,
∴由面积公式,得 absin = ,即ab=6.①
由余弦定理,得a2+b2﹣2abcos =7,
即a2+b2﹣ab=7.②
由②变形得(a+b)2=3ab+7.③
将①代入③得(a+b)2=25,故a+b=5
【解析】(1)由 a=2csinA及正弦定理得 sinA=2sinCsinA,又sinA≠0,可sinC= .又△ABC是锐角三角形,即可求C.(2)由面积公式,可解得ab=6,由余弦定理,可解得a2+b2﹣ab=7,联立方程即可解得a+b的值的值.
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.
练习册系列答案
相关题目
【题目】某学生对一些对数进行运算,如图表格所示:
x | 0.21 | 0.27 | 1.5 | 2.8 |
lgx | 2a+b+c﹣3(1) | 6a﹣3b﹣2(2) | 3a﹣b+c(3) | 1﹣2a+2b﹣c(4) |
x | 3 | 5 | 6 | 7 |
lgx | 2a﹣b(5) | a+c(6) | 1+a﹣b﹣c(7) | 2(a+c)(8) |
x | 8 | 9 | 14 | |
lgx | 3﹣3a﹣3c(9) | 4a﹣2b(10) | 1﹣a+2b(11) |
现在发觉学生计算中恰好有两次地方出错,那么出错的数据是( )
A.(3),(8)
B.(4),(11)
C.(1),(3)
D.(1),(4)