题目内容

【题目】在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且SABC= ,求a+b的值.

【答案】
(1)解:由 a=2csinA及正弦定理,得 sinA=2sinCsinA,

∵sinA≠0,

∴sinC=

又∵△ABC是锐角三角形,

∴C=


(2)解:∵c= ,C=

∴由面积公式,得 absin = ,即ab=6.①

由余弦定理,得a2+b2﹣2abcos =7,

即a2+b2﹣ab=7.②

由②变形得(a+b)2=3ab+7.③

将①代入③得(a+b)2=25,故a+b=5


【解析】(1)由 a=2csinA及正弦定理得 sinA=2sinCsinA,又sinA≠0,可sinC= .又△ABC是锐角三角形,即可求C.(2)由面积公式,可解得ab=6,由余弦定理,可解得a2+b2﹣ab=7,联立方程即可解得a+b的值的值.
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网