题目内容
【题目】若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为 .则直线l的倾斜角的取值范围是 .
【答案】[ , ]
【解析】解:圆x2+y2﹣4x﹣4y﹣10=0化简为标准方程,可得(x﹣2)2+(y﹣2)2=18,
∴圆心坐标为C(2,2),半径r=3 ,
∵在圆上至少有三个不同的点到直线l:ax+by=0的距离为 ,
∴圆心到直线的距离应小于或等于r﹣ = ,
由点到直线的距离公式,得 ,
∴(2a+2b)2≤2(a2+b2),整理得 ,
解之得2﹣ ≤ ≤2+ ,
∵直线l:ax+by=0的斜率k=﹣ ∈[2﹣ ,2+ ]
∴设直线l的倾斜角为α,则tanα∈[2﹣ ,2+ ],即tan ≤tanα≤tan .
由此可得直线l的倾斜角的取值范围是[ , ].
所以答案是:[ , ]
【考点精析】掌握直线的倾斜角是解答本题的根本,需要知道当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α=0°.
练习册系列答案
相关题目