题目内容
已知定点A(a,O)( a >0),B为x轴负半轴上的动点.以AB为边作菱形ABCD,使其两对角线的交点恰好落在y轴上.
(I)求动点D的轨迹E的方程;
(Ⅱ)过点A作直线l与轨迹E交于P、Q两点,设点R (- a,0),问当l绕点A转动时,∠PRQ是否可以为钝角?请给出结论,并加以证明.
(I)求动点D的轨迹E的方程;
(Ⅱ)过点A作直线l与轨迹E交于P、Q两点,设点R (- a,0),问当l绕点A转动时,∠PRQ是否可以为钝角?请给出结论,并加以证明.
详见解析
解法一:(Ⅰ)设D(x,y),∵A(a,0),由ABCD为菱形
且AC、BD的交点在y轴上,
∴B、C两点坐标为(-x,0)、(-a,y).
由AC⊥BD得
·=(2x,y)·(2a,-y)
=4ax - y2=0,
即 y2 = 4ax.
注意到ABCD为菱形,∴x≠0
故轨迹E的方程为y2 = 4ax(x≠0).
(Ⅱ)∠PRQ不可能为钝角,即∠PRQ≤90°.
证明如下:
(1)当PQ⊥x轴时,P、Q点的坐标为(a,±2a),又R(一a,0),
此时∠PRQ=90°,结论成立;
(2)当PQ与x轴不垂直时,设直线PQ的方程为y=k(x一a),
由得 k2x2 - (2ak2+4a)x + k2a2 = 0
记P(x1,y1),Q(x2,y2),则x1+x2=2a+,x1 x2=a2.
·=(x1+a)(x2+a)+y1y2
=(x1+a)(x2+a)+k2(x1- a)(x2- a)
=(1+k2) x1 x2+(a - ak2)( x1+x2)+a2+a2k2
=(1+k2) a2 +(a - ak2)( 2a+)+a2+a2k2=>0
即<,>为锐角,
综上(1)、(2)知∠PRQ≤90°成立.
解法二:(Ⅰ)设D(x,y),由ABCD为菱形且AC、BD的交点在y轴上,
∴C点坐标为(-a,y),∵A(a,0),由|DA|=|DC|得
,
化简得y2=4ax.
注意到ABCD为菱形,∴x≠O,
故轨迹E的方程为y2=4ax(x≠O).
(Ⅱ)∠PRQ不可能为钝角,即∠PRQ≤90°
证明如下:
设P(x1,y1),Q(x2,y2),同证法一易知,则x1 x2=a2.又y12=4ax1,y22=4ax2,且|PR|2=x1+x2+2a ,因为
|PR|2+|QR|2-|PQ|2=(x1+a)2+y12+(x2+a)2+y22-( x1+x2+2a)2
=2ax1+2ax2-4a2≥2-4a2=4a-4a2=0
从而 cos∠PRQ=≥0,
即∠PRQ≤90°
解法三:(Ⅰ)因为ABCD为菱形,且AC与BD的交点在y轴上,
所以点C的横坐标为 -a,
即点C在直线x = -a上,从而D到C的距离等于D到直线x = -a的距 离.又ABCD为菱形,所以点D到点A的距离与点D到直线x = -a的距离 相等,即轨迹E为抛物线,方程为y2=4ax.
注意到ABCD为菱形,∴x≠O,
故轨迹E的方程为y2=4ax(x≠O).
(Ⅱ) ∠PRQ不可能为钝角,即∠PRQ≤90°
证明如下:
如图,过P、Q向x轴及准线x = -a引垂线,记垂足为M、N、C、H,
则|MR|=|PG|=|PA|≥|PM|,所以∠PRM≤45°,
同理可证∠QRN≤45°,从而∠PRQ≤90°
解法四:(Ⅰ)同解法一.
(Ⅱ) ∠PRQ不可能为钝角,即∠PRQ≤90°
证明如下:
设P(x1,y1),则y12=4ax1,tan∠PRM=|kPR|=||=,
∵x1+a≥2,∴tan∠PRA≤1,∠QRA≤45°,
同理可证∠QRA≤45°,即∠PRQ≤90°
且AC、BD的交点在y轴上,
∴B、C两点坐标为(-x,0)、(-a,y).
由AC⊥BD得
·=(2x,y)·(2a,-y)
=4ax - y2=0,
即 y2 = 4ax.
注意到ABCD为菱形,∴x≠0
故轨迹E的方程为y2 = 4ax(x≠0).
(Ⅱ)∠PRQ不可能为钝角,即∠PRQ≤90°.
证明如下:
(1)当PQ⊥x轴时,P、Q点的坐标为(a,±2a),又R(一a,0),
此时∠PRQ=90°,结论成立;
(2)当PQ与x轴不垂直时,设直线PQ的方程为y=k(x一a),
由得 k2x2 - (2ak2+4a)x + k2a2 = 0
记P(x1,y1),Q(x2,y2),则x1+x2=2a+,x1 x2=a2.
·=(x1+a)(x2+a)+y1y2
=(x1+a)(x2+a)+k2(x1- a)(x2- a)
=(1+k2) x1 x2+(a - ak2)( x1+x2)+a2+a2k2
=(1+k2) a2 +(a - ak2)( 2a+)+a2+a2k2=>0
即<,>为锐角,
综上(1)、(2)知∠PRQ≤90°成立.
解法二:(Ⅰ)设D(x,y),由ABCD为菱形且AC、BD的交点在y轴上,
∴C点坐标为(-a,y),∵A(a,0),由|DA|=|DC|得
,
化简得y2=4ax.
注意到ABCD为菱形,∴x≠O,
故轨迹E的方程为y2=4ax(x≠O).
(Ⅱ)∠PRQ不可能为钝角,即∠PRQ≤90°
证明如下:
设P(x1,y1),Q(x2,y2),同证法一易知,则x1 x2=a2.又y12=4ax1,y22=4ax2,且|PR|2=x1+x2+2a ,因为
|PR|2+|QR|2-|PQ|2=(x1+a)2+y12+(x2+a)2+y22-( x1+x2+2a)2
=2ax1+2ax2-4a2≥2-4a2=4a-4a2=0
从而 cos∠PRQ=≥0,
即∠PRQ≤90°
解法三:(Ⅰ)因为ABCD为菱形,且AC与BD的交点在y轴上,
所以点C的横坐标为 -a,
即点C在直线x = -a上,从而D到C的距离等于D到直线x = -a的距 离.又ABCD为菱形,所以点D到点A的距离与点D到直线x = -a的距离 相等,即轨迹E为抛物线,方程为y2=4ax.
注意到ABCD为菱形,∴x≠O,
故轨迹E的方程为y2=4ax(x≠O).
(Ⅱ) ∠PRQ不可能为钝角,即∠PRQ≤90°
证明如下:
如图,过P、Q向x轴及准线x = -a引垂线,记垂足为M、N、C、H,
则|MR|=|PG|=|PA|≥|PM|,所以∠PRM≤45°,
同理可证∠QRN≤45°,从而∠PRQ≤90°
解法四:(Ⅰ)同解法一.
(Ⅱ) ∠PRQ不可能为钝角,即∠PRQ≤90°
证明如下:
设P(x1,y1),则y12=4ax1,tan∠PRM=|kPR|=||=,
∵x1+a≥2,∴tan∠PRA≤1,∠QRA≤45°,
同理可证∠QRA≤45°,即∠PRQ≤90°
练习册系列答案
相关题目