题目内容
【题目】某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的列联表:
(1)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为,求的分布列和数学期望;
(2)根据表3中数据,能否认为爱好羽毛球运动与性别有关?
附:
【答案】(1)分布列见解析,期望为;(2)没有理由认为爱好羽毛球运动与性别有关.
【解析】
(1)由题意知X~B(3,),计算对应的概率值,写出X的分布列,计算数学期望值;
(2)由表中数据计算观测值,对照临界值得出结论.
(1)任一学生爱好羽毛球的概率为,故.
,
所以,随机变量的分布列为
0 | 1 | 2 | 3 | |
随机变量的数学期望
(2)因为
所没有理由认为爱好羽毛球运动与性别有关
【题目】为了解人们对城市治安状况的满意度,某部门对城市部分居民的“安全感”进行调查,在调查过程中让每个居民客观地对自己目前生活城市的安全感进行评分,并把所得分作为“安全感指数”,即用区间[0,100]内的一个数来表示,该数越接近100表示安全感越高.现随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:
安全感指数 | [0,20) | [20,40) | [40,60) | [60,80) | [80,100] |
男居民人数 | 8 | 16 | 226 | 131 | 119 |
女居民人数 | 12 | 14 | 174 | 122 | 178 |
根据表格,解答下面的问题:
(Ⅰ)估算该地区居民安全感指数的平均值;
(Ⅱ)如果居民安全感指数不小于60,则认为其安全感好.为了进一步了解居民的安全感,调查组又在该地区随机抽取3对夫妻进行调查,用X表示他们之中安全感好的夫妻(夫妻二人都感到安全)的对数,求X的分布列及期望(以样本的频率作为总体的概率).