题目内容
【题目】已知函数,则下列结论正确的有( )
A. 函数的最大值为2;
B. 函数的图象关于点对称;
C. 函数的图象左移个单位可得函数的图象;
D. 函数的图象与函数的图象关于轴对称;
E. 若实数使得方程在上恰好有三个实数解,,,则一定有.
【答案】ACDE
【解析】
由正弦函数的最值可判断A;由对称中心解方程可判断B; 运用图象平移规律和函数奇偶性的性质,可判断C;运用函数图像的对称性,可判断D;运用图像可判断E.
由数可得最大值为2,故A对;
可令kπ,可得x=kπ,k∈Z,
即有对称中心为(kπ,0),故B错;
f(x)的图象向左平移个单位可得y=2sin(x),即y=2sin(x),故C对;
与函数的图象关于x轴对称的函数为y=,故D对;又f(x)的对称轴为kπ,可得x=kπ,k∈Z,
函数在上的大致图像:
若使得方程在上恰好有三个实数解,,,则=0,+,
所以,故E对,
故选:ACDE.
练习册系列答案
相关题目