ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬Æä½¹¾àΪ4£¬Ë«ÇúÏßC2£º$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1£¬C1£¬C2µÄÀëÐÄÂÊ»¥Îªµ¹Êý£®£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¹ýÍÖÔ²µÄÓÒ¶¥µã×÷Ö±Ïß½»Å×ÎïÏß$\frac{{y}^{2}}{4}$=xÓÚA£¬BÁ½µã£¬¹ýÔµãOÓëA£¬BÁ½µãµÄÖ±Ïß·Ö±ðÓëÍÖÔ²Ïà½ÏÓÚµãD£¬E£¬Ö¤Ã÷$\frac{|OD||OE|}{|DE|}$Ϊ¶¨Öµ£®
·ÖÎö £¨1£©ÓÉÀëÐÄÂÊΪe=2£®¿ÉÇóµÃÍÖÔ²µÃ·½³Ì£®
£¨2£©ÉèÖ±Ïß·½³ÌΪx=my+4£¬´øÈëÅ×ÎïÏß·½³ÌΪy2=4x£¬µÃy2-4my-16=0£®ÁªÁ¢£¬¸ù¾ÝÌõ¼þÁÐʽÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉ${C}_{2}£º\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$£¬ÆäÀëÐÄÂÊΪe=2£®
ËùÒÔ$\left\{\begin{array}{l}{2c=4}\\{\frac{c}{a}=\frac{1}{2}}\end{array}\right.$µÃ$\left\{\begin{array}{l}{a=4}\\{c=2}\end{array}\right.$£®¹Êb2=12ËùÒÔÍÖÔ²C1µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$£®
£¨2£©Éè¹ýÍÖÔ²µÃÓÒ¶¥µã£¨4£¬0£©µÃÖ±Ïß·½³ÌΪx=my+4£¬´øÈëÅ×ÎïÏß·½³ÌΪy2=4x£¬µÃy2-4my-16=0£®
ÉèA£¨x1£¬y1£©B£¨x2£¬y2£©£¬Ôò$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=4m}\\{{y}_{1}{y}_{2}=-16}\end{array}\right.$
¡àx1x2+y1y2=£¨my1+4£©£¨my2+4£©+y1y2=£¨1+m2£©y1y2+4m£¨y1+y2£©+16=0
¡àOA¡ÍOB
ÉèD£¨x3£¬y3£©¡¢E£¨x4£¬y4£©£¬Ö±ÏßDEµÄ·½³ÌΪx=ty+¦Ë£¬´úÈë$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$µÃ
£¨3t2+4£©y2+6t¦Ëy+3¦Ë2-48=0£¬ÓÚÊÇ${y}_{3}+{y}_{4}=-\frac{6t¦Ë}{3{t}^{2}+4}£¬{y}_{3}{y}_{4}=\frac{3{¦Ë}^{2}-48}{3{t}^{2}+4}$
´Ó¶ø${x}_{3}{x}_{4}=£¨t{y}_{3}+¦Ë£©£¨t{y}_{4}+¦Ë£©=\frac{4{¦Ë}^{2}-48{t}^{2}}{3{t}^{2}+4}$£¬¡ßOA¡ÍOB£¬¡àOD¡ÍOE£¬¡àx3x4+y3y4=0£¬
´úÈëÕûÀíµÃ7¦Ë2=48£¨t2+1£©£¬¹ýÔµãO×÷Ö±ÏßDEµÄ´¹ÏßOM£¬´¹×ãΪM£¬
¡àԵ㵽ֱÏßDEµÄ¾àÀëd=$\frac{|¦Ë|}{\sqrt{1+{t}^{2}}}=\frac{4\sqrt{21}}{7}$Ϊ¶¨Öµ£¬
¡ß¡÷DOEΪֱ½ÇÈý½ÇÐΣ¬¡à$\frac{1}{2}|OD||OE|=\frac{1}{2}|DE|d$£¬¡à$\frac{|OD||OE|}{|DE|}$Ϊ¶¨Öµ£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦Óã¬Ôڸ߿¼ÖÐÊô³£¿¼ÌâÐÍ£¬ÄѶÈÉÔ´ó£®
A£® | £¨-1£¬0£© | B£® | £¨0£¬1£© | C£® | £¨-¡Þ£¬0£© | D£® | £¨-¡Þ£¬0£©¡È£¨1£¬+¡Þ£© |
A£® | $£¨{\frac{2}{3}£¬1}]$ | B£® | $£¨{\frac{1}{2}£¬\frac{5}{6}}]$ | C£® | $£¨{\frac{2}{3}£¬\frac{4}{3}}]$ | D£® | $£¨{\frac{3}{4}£¬\frac{5}{4}}]$ |
A£® | 5 | B£® | 7 | C£® | 10 | D£® | 14 |