题目内容
【题目】(1)已知命题:实数满足,命题:实数满足方程表示的焦点在轴上的椭圆,且是的充分不必要条件,求实数的取值范围;
(2)设命题:关于的不等式的解集是;:函数的定义域为.若是真命题,是假命题,求实数的取值范围.
【答案】(1);(2)
【解析】分析:(1)利用一元二次不等式的解法化简,利用椭圆的标准方程化简,由包含关系列不等式求解即可;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.
详解:(1)由得:,即命题
由表示焦点在轴上的椭圆,可得,解得,即命题.
因为是的充分不必要条件,所以或
解得:,∴实数的取值范围是.
(2)解:命题为真命题时,实数的取值集合为
对于命题:函数的定义域为的充要条件是①恒成立.
当时,不等式①为,显然不成立;
当时,不等式①恒成立的条件是,解得
所以命题为真命题时,的取值集合为
由“是真命题,是假命题”,可知命题、一真一假
当真假时,的取值范围是
当假真时,
综上,的取值范围是.
【题目】从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)在表格中作出这些数据的频率分布直方图;
(2)求这些数据的众数和中位数
(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);
【题目】随着苹果6手机的上市,很多消费者觉得价格偏高,尤其是一部分大学生可望而不可及,因此“国美在线”推出无抵押分期付款购买方式,某分期店对最近100位采用分期付款的购买者进行统计,统计结果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
频 数 | 35 | 25 | a | 10 | b |
已知分3期付款的频率为0.15,并且店销售一部苹果6,顾客分1期付款,其利润为1千元;分2期或3期付款,其利润为1.5千元;分4期或5期付款,其利润为2千元,以频率作为概率.
(1)求事件A:“购买的3位顾客中,至多有1位分4期付款”的概率;
(2)用X表示销售一该手机的利润,求X的分布列及数学期望E(x)