题目内容

【题目】在△ABC中,角ABC所对的边分别为abcacosBbcosA

(1)求 的值

(2)若sin A,求sin(C) 的值.

【答案】(1)1(2)

【解析】分析:(1)已知等式利用正弦定理化简,利用两角和与差的正弦函数公式化简,整理得到结果,

(2)由(1)可得:C=π-2A,利用sinA=,A为锐角,可得:cosA,sin2A,cos2A的值,利用诱导公式及两角和与差的正弦函数公式即可求值.

(1)acosBbcosA,得sinAcosB=sinBcosA

sin(AB)=0.

因为AB∈(0,π),所以AB∈(-π,π),所以AB=0,

所以ab,即=1.

(2)因为sinA,且A为锐角,所以cosA

所以sinC=sin(π-2A)=sin2A=2sinAcosA

cosC=cos(π-2A)=-cos2A=-1+2sin2A=-

所以sin(C)=sinCcos-cosCsin

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网