题目内容
【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知
=2,cosB=
,b=3,求:
(1)a和c的值;
(2)cos(B﹣C)的值.
【答案】
(1)解:∵
=2,cosB=
,
∴cacosB=2,即ac=6①,
∵b=3,
∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,
∴a2+c2=13②,
联立①②得:a=3,c=2;
(2)解:在△ABC中,sinB= =
=
,
由正弦定理 =
得:sinC=
sinB=
×
=
,
∵a=b>c,∴C为锐角,
∴cosC= =
=
,
则cos(B﹣C)=cosBcosC+sinBsinC= ×
+
×
=
【解析】(1)利用平面向量的数量积运算法则化简
=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联立即可求出ac的值;(2)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.
【考点精析】本题主要考查了两角和与差的余弦公式和余弦定理的定义的相关知识点,需要掌握两角和与差的余弦公式:;余弦定理:
;
;
才能正确解答此题.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )
表1
成绩 | 不及格 | 及格 | 总计 |
男 | 6 | 14 | 20 |
女 | 10 | 22 | 32 |
总计 | 16 | 36 | 52 |
表2
视力 | 好 | 差 | 总计 |
男 | 4 | 16 | 20 |
女 | 12 | 20 | 32 |
总计 | 16 | 36 | 52 |
表3
智商 | 偏高 | 正常 | 总计 |
男 | 8 | 12 | 20 |
女 | 8 | 24 | 32 |
总计 | 16 | 36 | 52 |
表4
阅读量 | 丰富 | 不丰富 | 总计 |
男 | 14 | 6 | 20 |
女 | 2 | 30 | 32 |
总计 | 16 | 36 | 52 |
A.成绩
B.视力
C.智商
D.阅读量