题目内容
【题目】已知数列{an}的前n项和Sn满足Sn=2an-n.
(1)求数列{an}的通项公式;
(2)设,记数列{bn}的前n项和为Tn,证明:
【答案】(1);(2)证明见解析.
【解析】
试题分析:(1)由题意得,得出,相减得到,进而得到数列是首项为,公比为的等比数列,即可求解数列的通项公式;(2)由(1)得出,转化为,表示出,根据放缩法即可得以证明.
试题解析:(1)因为Sn=2an-n,所以当n=1时,S1=a1=2a1-1,
所以a1=1.又Sn+1=2an+1-n-1,得an+1=2an+1-2an-1,得an+1+1=2(an+1),
又a1+1=2,所以an+1=2n,故an=2n-1.
(2)证明:因为bn==,
所以bn-=-,所以Tn-=-(++…+)<0,
得Tn-<0.又=≤,
所以Tn-≥-()=-+>-.所以-<Tn-<0.
【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元) | ||||||
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.
不少于60元 | 少于60元 | 合计 | |
男 | 40 | ||
女 | 18 | ||
合计 |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为(每次抽奖互不影响,且的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数(元)的分布列并求其数学期望.
附:参考公式和数据:,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得出了如下数据:
间隔时间(分钟) | 10 | 11 | 12 | 13 | 14 | 15 |
等待人数(人) | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这六组数据中选取四组数据作线性回归分析,然后用剩下的两组数据进行检验
(1)求从这六组数据中选取四组数据后,剩下的的两组数据不相邻的概率:
(2)若先取的是后面四组数据,求关干的线性回归方程;
(3)规定根据(2)中线性回归方程预利的数据与用剩下的两组实际数据相差不超过人,则所求出的线性回归方程是“最佳回归方程”,请判断(2)中所求的是 “最佳回归方程”吗?为了使等候的乘客不超过人,则间隔时间设置为分钟合适吗?
附:对于一组组数据, 其回归直线 +的斜率和截距的最小二乘估计分别为: ,
【题目】某面包店推出一款新面包,每个面包的成本价为元,售价为元,该款面包当天只出一炉(一炉至少个,至多个),当天如果没有售完,剩余的面包以每个元的价格处理掉,为了确定这一炉面包的个数,以便利润最大化,该店记录了这款新面包最近天的日需求量(单位:个),整理得下表:
日需求量 | |||||
频数 |
(1)根据表中数据可知,频数与日需求量(单位:个)线性相关,求关于的线性回归方程;
(2)若该店这款新面包每日出炉数设定为个
(i)求日需求量为个时的当日利润;
(ii)求这天的日均利润.
相关公式:,
【题目】每个国家对退休年龄都有不一样的规定,从2018年开始,我国关于延迟退休的话题一直在网上热议,为了了解市民对“延迟退休”的态度,现从某地市民中随机选取100人进行调查,调查情况如下表:
年龄段(单位:岁) | ||||||
被调查的人数 | ||||||
赞成的人数 |
(1)从赞成“延迟退休”的人中任选1人,此人年龄在的概率为,求出表格中的值;
(2)若从年龄在的参与调查的市民中按照是否赞成“延迟退休”进行分层抽样,从中抽取10人参与某项调查,然后再从这10人中随机抽取4人参加座谈会,记这4人中赞成“延迟退休”的人数为,求的分布列及数学期望.
【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:
个人所得税税率表(调整前) | 个人所得税税率表(调整后) | ||||
免征额3500元 | 免征额5000元 | ||||
级数 | 全月应纳税所得额 | 税率(%) | 级数 | 全月应纳税所得额 | 税率(%) |
1 | 不超过1500元部分 | 3 | 1 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记
(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
收入(元) | ||||||
人数 | 30 | 40 | 10 | 8 | 7 | 5 |
先从收入在及的人群中按分层抽样抽取7人,再从中选2人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
(3)小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?