题目内容
【题目】四棱锥中,底面为直角梯形,,,,,,为的中点,为的中点,平面底面.
(Ⅰ)证明:平面平面;
(Ⅱ)若与底面所成的角为,求二面角的余弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【解析】
(Ⅰ)根据线段中点的性质、平行四边形形的判定定理和性质定理,结合面面垂直的性质定理和判定定理、平行线的性质进行证明即可;
(Ⅱ)连结,根据等腰三角形的性质,结合面面垂直的性质定理可以证明出底面,这样可以建立以,,分别为,,轴的正方向建立空间直角坐标系,根据空间向量夹角公式进行求解即可.
(Ⅰ)
四边形是平行四边形
.
又,.
又面面,面面,
面
面
且面
平面平面.
(Ⅱ)连结,,为中点,
又平面,平面平面,
平面平面,
底面,
又,以,,分别为,,轴的正方向建立空间直角坐标系,设,,取平面的法向量,,,
,,
,
设平面的法向量,
,令,
,.
设二面角的平面角为
又为钝角,,即二面角的余弦值为.
练习册系列答案
相关题目
【题目】袋子中有四张卡片,分别写有“国”、“富”、“民”、“强”四个字,有放回地从中任取一张卡片,将三次抽取后“国”“富”两个字都取到记为事件A,用随机模拟的方法估计事件A发生的概率,利用电脑随机产生整数0,1,2,3四个随机数,分别代表“国”、“富”、“民”、“强”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
231 | 232 | 210 | 023 | 122 | 021 | 321 | 220 | 031 |
231 | 103 | 133 | 132 | 001 | 320 | 123 | 130 | 233 |
由此可以估计事件A发生的概率为_____.