题目内容

【题目】若函数f(x)= +bx+c有极值点x1 , x2(x1<x2),且f(x1)=x1 , 则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数为(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:函数f(x)=x3+ ax2+bx+c有两个极值点x1 , x2 , ∴f′(x)=3x2+ax+b=0有两个不相等的实数根,
∴△=a2﹣12b>0.
而方程3(f(x))2+af(x)+b=0的△1=△>0,
∴此方程有两解且f(x)=x1或x2
不妨取0<x1<x2 , f(x1)>0.
①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,
∵f(x1)=x1 , 可知方程f(x)=x1有两解.
②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1 , ∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.
综上①②可知:方程f(x)=x1或f(x)=x2 . 只有3个实数解.即关于x的方程3(f(x))2+af(x)+b=0的只有3不同实根.
故选:C.

【考点精析】认真审题,首先需要了解函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网