题目内容
【题目】如图,在平面直角坐标系中,已知圆: ,点,点(),以为圆心, 为半径作圆,交圆于点,且的平分线交线段于点.
(1)当变化时,点始终在某圆锥曲线上运动,求曲线的方程;
(2)已知直线 过点 ,且与曲线交于 两点,记面积为, 面积为,求的取值范围.
【答案】(1);(2).
【解析】试题分析:(I)推导出△QAB≌△QPB,从而QC+QA=4,由椭圆的定义可知,Q点的轨迹是以C,A为焦点, 的椭圆,由此能求出点Q的轨迹方程.
(II)设直线l:x=my-1,设M(x1,y1),N(x2,y2),推导出,由得,由此利用根的判别式、韦达定理,结合已知条件求出的取值范围.
试题解析:
(1)∵, , ,
∴≌,∴,
∵,
由椭圆的定义可知, 点的轨迹是以, 为焦点, 的椭圆,
故点的轨迹方程为.
(2)由题可知,设直线 : ,不妨设 ,
∵
,
∵,∴, ,
∴,
∵,即,
∴,
∴ .
练习册系列答案
相关题目