题目内容

已知直线ax-by-2=0与曲线y=x3在点P(1,1)处的切线互相垂直,则
a
b
为(  )
A、
1
3
B、
2
3
C、-
2
3
D、-
1
3
分析:由导数的几何意义可求曲线y=x3在(1,1)处的切线斜率k,然后根据直线垂直的条件可求
a
b
的值
解答:解:设曲线y=x3在点P(1,1)处的切线斜率为k,则k=f′(1)=3
因为直线ax-by-2=0与曲线y=x3在点P(1,1)处的切线互相垂直
所以
a
b
= -
1
3

故选D
点评:本题主要考查了导数的几何意义:曲线在点(x0,y0)处的切线斜率即为该点处的导数值,两直线垂直的条件的运用.属于基础试题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网