题目内容
【题目】已知函数 (0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为 .
(Ⅰ)求 的值;
(Ⅱ)将函数y=f(x)的图象向右平移 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
【答案】解:(Ⅰ) = = .
∵f(x)为偶函数,
∴对x∈R,f(﹣x)=f(x)恒成立,
∴ .
即 ,
整理得 .
∵ω>0,且x∈R,所以 .
又∵0<φ<π,故 .
∴ .
由题意得 ,所以ω=2.
故f(x)=2cos2x.
∴ .
(Ⅱ)将f(x)的图象向右平移 个单位后,得到 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到 的图象.
∴ .
当 (k∈Z),
即 (k∈Z)时,g(x)单调递减,
因此g(x)的单调递减区间为 (k∈Z).
【解析】(1)先用两角和公式对函数f(x)的表达式化简得到f(x)=2sin(ωx+φ),利用偶函数的性质f(x)=f(-x)求得ω,进而得到f(x)的表达式,代入可得f(),(2)根据三角函数的平移变换(左加右减)得到g(x)的解析式,再根据余弦函数的图象和性质得出g(x)的单调区间.
【考点精析】根据题目的已知条件,利用两角和与差的正弦公式和函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握两角和与差的正弦公式:;图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
【题目】有2000名网购者在11月11日当天于某购物网站进行网购消费(消费金额不超过1000元),其中有女士1100名,男士900名、该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分析,如下表:(消费金额单位:元) 女士消费情况:
消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人数 | 10 | 25 | 35 | 30 | x |
男士消费情况:
消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人数 | 15 | 30 | 25 | y | 5 |
附:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(K2= ,n=a+b+c+d)
(1)计算x,y的值;在抽出的200名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者都是男士的概率;
(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“是否为‘网购达人’与性别有关?”
女士 | 男士 | 总计 | |
网购达人 | |||
非网购达人 | |||
总计 |