题目内容
【题目】在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,AB=PA=BC(a>0).
(1)当a=1时,求证:BD⊥PC;
(2)若BC边上有且只有一个点Q,使得PQ⊥QD,求此时二面角A-PD-Q的余弦值.
【答案】(1)详见解析(2)
【解析】试题分析:(1)由已知得PA⊥BD,ABCD是正方形,BD⊥AC,由此能证明BD⊥PC.(2)AB,AD,AP两两垂直,分别以它们所在直线为x轴、y轴、z轴建立坐标系,利用向量法求出平面PQD的法向量及平面PAD的法向量即可求出二面角A-PD-Q的余弦值.
试题解析:
(1)当a=1时,底面ABCD为正方形,∴BD⊥AC,
又∵BD⊥PA,∴BD⊥面PAC,又PC面PAC,∴BD⊥PC.
(2)∵AB,AD,AP两两垂直,∴分别以为它们所在直线为x轴、y轴、z轴建立空间直角坐标系,如图所示.
令AB=1,可得BC=a,则B(1,0,0),D(0,a,0),C(1,a,0),P(0,0,1).
设BQ=m,则Q(1,m,0)(0≤m≤a),
要使PQ⊥QD,只要·=-1+m(a-m)=0,
即m2-am+1=0,由Δ=a2-4=0a=2,此时m=1.
∴BC边上有且只有一个点Q,使得PQ⊥QD,
此时,Q为BC的中点,且a=2,设平面PQD的法向量p=(x,y,1),
则即
解得p=(,,1),
取平面PAD的法向量q=(1,0,0),
∴cos<p,q>==,
即二面角A-PD-Q的余弦值为.
【题目】近年来许多地市空气污染较为严重,现随机抽取某市一年(365天)内100天的空气质量指数()的监测数据,统计结果如表:
指数 | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
天数 | 4 | 13 | 18 | 30 | 20 | 15 |
记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时,对企业没有造成经济损失;当在区间内时,对企业造成的经济损失与成直线模型(当指数为150时,造成的经济损失为1100元,当指数为200时,造成的经济损失为1400元);当指数大于300时,造成的经济损失为2000元.
(1)试写出的表达式;
(2)试估计在本年内随机抽取1天,该天经济损失大于1100且不超过1700元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,这30天中有8天为严重污染,完成列联表,并判断是否有的把握认为该市本年度空气严重污染与供暖有关?
非严重污染 | 严重污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 |
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中