题目内容
【题目】设函数f(x)=ex-ax-1.
(1)当a>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0;
(2)求证:对任意的正整数n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1.
【答案】(1)见解析(2)见解析.
【解析】试题分析:(1)在a>0的情况下讨论函数的单调性,求出函数的小值g(a)=a-alna-1,再对这个函数求导,研究这个函数的最大值g(1)=0,故g(a)≤0。(2)结合第一问得到x>0时,总有ex>x+1,两边变形得到(x+1)n+1<(ex)n+1=e(n+1)x.再利用赋值法得到结果即可。
解析:
(1)由a>0及f′(x)=ex-a可得,函数f(x)在(-∞,lna)上单调递减,
在(lna,+∞)上单调递增,
故函数f(x)的最小值为g(a)=f(lna)=elna-alna-1=a-alna-1,则g′(a)=-lna,
故当a∈(0,1)时,g′(a)>0;
当a∈(1,+∞)时,g′(a)<0,
从而可知g(a)在(0,1)上单调递增,
在(1,+∞)上单调递减,且g(1)=0,故g(a)≤0.
(2)由(1)可知,当a=1时,总有f(x)=ex-x-1≥0,
当且仅当x=0时等号成立,即当x>0时,总有ex>x+1.
于是,可得(x+1)n+1<(ex)n+1=e(n+1)x.
令x+1=,即x=-,可得n+1<e-n;
令x+1=,即x=-,可得n+1<e-(n-1);
令x+1=,即x=-,可得n+1<e-(n-2);
…
令x+1=,即x=-,可得n+1<e-1.
对以上各式求和可得:
n+1+n+1+n+1+…+n+1<e-n+e-(n-1)+e-(n-2)+…+e-1
===<<1.
故对任意的正整数n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1.