题目内容
(本小题满分10分)
如图,四边形ACBD内接于圆O,对角线AC与BD相交于M, AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于H,
求证:(1)EF⊥AB (2)OH=ME
如图,四边形ACBD内接于圆O,对角线AC与BD相交于M, AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于H,
求证:(1)EF⊥AB (2)OH=ME
(1)根据对顶角,和同弧所对的圆周角相等来证明。
(2)根据平行四边形的性质来证明角相等。
(2)根据平行四边形的性质来证明角相等。
试题分析:(1)
……………………………………………………………………5分
(2)
连结HM,并延长交CD于G,又(1)的证法,可证
∴OE∥HG ,OH∥EF
∴OEMH是平行四边形
∴OH=ME…………………………………………………………………10分
点评:对于平面几何中的线段的相等,一般通过证明角相等来得到边相等。同时垂直的证明,只要证明三角形中其余的两个角和为直角即可。属于基础题。
练习册系列答案
相关题目