题目内容

【题目】已知数列{an}和{bn}(bn≠0,n∈N*),满足a1=b1=1,anbn+1﹣an+1bn+bn+1bn=0
(1)令cn= ,证明数列{cn}是等差数列,并求{cn}的通项公式
(2)若bn=2n1 , 求数列{an}的前n项和Sn

【答案】
(1)证明:由anbn+1﹣an+1bn+bn+1bn=0,得

=1,

因为cn=

所以cn+1﹣cn=1,

所以数列{cn}是等差数列,所以{cn}=n


(2)由bn=2n1得an=n2n1

所以Sn=1×20+2×21+3×22+…+n2n1,①

2Sn=1×21+2×22+3×33+…+n2n,②

由②﹣①,得Sn=2n(n﹣1)+1


【解析】(1)数列{an}和{bn}(bn≠0,n∈N*),满足a1=b1=1,anbn+1﹣an+1bn+bn+1bn=0,又cn= ,可得cn+1﹣cn=1,即可证明;(2)利用错位相减法求和即可.
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网