题目内容

【题目】如图,已知点D为△ABC的边BC上一点, =3 ,En(n∈N+)为边AC上的点,满足 = an+1 =(4an+3) ,其中实数列{an}中an>0,a1=1,则{an}的通项公式为(
A.32n1﹣2
B.2n﹣1
C.4n﹣2
D.24n1﹣1

【答案】D
【解析】解∵ =3 , ∴ = +
设m =
= an+1 =(4an+3)
m= an+1 m=﹣(4an+3)
an+1=﹣ (4an+3),
∴an+1+1=4(an+1),
∵a1+1=2,
∴{an+1}是以2为首项,4为公比的等比数列,
∴an+1=24n1
∴an=24n1﹣1.
故选:D
【考点精析】认真审题,首先需要了解平面向量的基本定理及其意义(如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网